Discussion 17 Worksheet

Some past exam problems

Date: 11/8/2021

MATH 53 Multivariable Calculus

1 Computing Curl and Divergence

For each of the following vector fields \vec{F} , compute its curl and divergence. State whether each vector field is irrotational, incompressible, or neither.

- 1. $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$
- 2. $\vec{F} = \langle y^2, z^3, x^4 \rangle$
- 3. $\vec{F} = \langle y^2 x, e^z, z^2 \rangle$
- 4. $\vec{F} = \nabla f$, where $f(x, y, z) = 2xye^{yz}$

2 Divergence and Curl Identities

Let $\vec{F} = \langle P, Q, R \rangle$ and $\vec{G} = \langle P', Q', R' \rangle$ be vector fields on \mathbb{R}^3 , and let $f : \mathbb{R}^3 \to \mathbb{R}$ and $g : \mathbb{R}^3 \to \mathbb{R}$ be functions on \mathbb{R}^3 . Assume all of these are infinitely differentiable. Prove each of the following vector identities.

1. $\nabla \cdot (\vec{F} + \vec{G}) = \nabla \cdot \vec{F} + \nabla \cdot \vec{G}$ 2. $\nabla \times (\vec{F} + \vec{G}) = \nabla \times \vec{F} + \nabla \times \vec{G}$ 3. $\nabla \cdot (f\vec{F}) = f(\nabla \cdot \vec{F}) + \vec{F} \cdot (\nabla f)$ 4. $\nabla \times (f\vec{F}) = f(\nabla \times \vec{F}) + (\nabla f) \times \vec{F}$ 5. $\nabla \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot (\nabla \times \vec{F}) - \vec{F} \cdot (\nabla \times \vec{G})$ 6. $\nabla \cdot (\nabla f \times \nabla g) = 0$ 7. $\nabla \times (\nabla \times \vec{F})) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$

3 Challenge

Suppose you are given a pair of (infinitely differentiable) vector fields \vec{E} and \vec{B} in \mathbb{R}^3 in \mathbb{R}^3 , and consider each vector field as additionally varying with respect to a variable t (in addition to the variables x, y, and z for \mathbb{R}^3). Suppose furthermore that these vector fields satisfy the "Maxwell equations in vacuum:"

$$\nabla \cdot \vec{E} = 0 \qquad \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \vec{B} = 0 \qquad \qquad \nabla \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

for some constant $c^2 > 0$. Prove that these vector fields satisfy the "wave equations"

$$\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} \qquad \qquad \nabla^2 \vec{B} = \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2}.$$

Here $\nabla^2 \vec{E}$ is the vector Laplacian

$$\nabla^2 \vec{E} = \frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2},$$

and $\nabla^2 \vec{B}$ is defined similarly (with \vec{E} replaced by \vec{B}).

By completing this exercise, you are showing that the fundamental laws of electrodynamics suggest the possibility of electromagnetic waves, i.e. light. *Fiat lux!*

4 True/False

Supply convincing reasoning for your answer. Assume all functions are infinitely differentiable unless stated otherwise.

- (a) T F For every vector field \vec{F} on \mathbb{R}^3 , we have $\nabla \cdot (\nabla \times \vec{F}) = 0$.
- (b) T F The divergence of a vector field is a scalar function, while the curl of a vector field is a vector field.
- (c) T F Every vector field \vec{F} on \mathbb{R}^3 arises as the curl of some vector field \vec{G} .
- (d) T F Every function $f : \mathbb{R}^3 \to \mathbb{R}$ arises as the divergence of some vector field \vec{F} .

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.