Discussion 17 Worksheet
 Some past exam problems

Date: 11/8/2021
MATH 53 Multivariable Calculus

1 Computing Curl and Divergence

For each of the following vector fields \vec{F}, compute its curl and divergence. State whether each vector field is irrotational, incompressible, or neither.

1. $\vec{F}=x \vec{i}+y \vec{j}+z \vec{k}$
2. $\vec{F}=\left\langle y^{2}, z^{3}, x^{4}\right\rangle$
3. $\vec{F}=\left\langle y^{2} x, e^{z}, z^{2}\right\rangle$
4. $\vec{F}=\nabla f$, where $f(x, y, z)=2 x y e^{y z}$

2 Divergence and Curl Identities

Let $\vec{F}=\langle P, Q, R\rangle$ and $\vec{G}=\left\langle P^{\prime}, Q^{\prime}, R^{\prime}\right\rangle$ be vector fields on \mathbb{R}^{3}, and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be functions on \mathbb{R}^{3}. Assume all of these are infinitely differentiable. Prove each of the following vector identities.

1. $\nabla \cdot(\vec{F}+\vec{G})=\nabla \cdot \vec{F}+\nabla \cdot \vec{G}$
2. $\nabla \times(\vec{F}+\vec{G})=\nabla \times \vec{F}+\nabla \times \vec{G}$
3. $\nabla \cdot(f \vec{F})=f(\nabla \cdot \vec{F})+\vec{F} \cdot(\nabla f)$
4. $\nabla \times(f \vec{F})=f(\nabla \times \vec{F})+(\nabla f) \times \vec{F}$
5. $\nabla \cdot(\vec{F} \times \vec{G})=\vec{G} \cdot(\nabla \times \vec{F})-\vec{F} \cdot(\nabla \times \vec{G})$
6. $\nabla \cdot(\nabla f \times \nabla g)=0$
7. $\nabla \times(\nabla \times \vec{F}))=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}$

3 Challenge

Suppose you are given a pair of (infinitely differentiable) vector fields \vec{E} and \vec{B} in \mathbb{R}^{3} in \mathbb{R}^{3}, and consider each vector field as additionally varying with respect to a variable t (in addition to the variables x, y, and z for \mathbb{R}^{3}). Suppose furthermore that these vector fields satisfy the "Maxwell equations in vacuum:"

$$
\begin{array}{ll}
\nabla \cdot \vec{E}=0 & \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

for some constant $c^{2}>0$. Prove that these vector fields satisfy the "wave equations"

$$
\nabla^{2} \vec{E}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \quad \nabla^{2} \vec{B}=\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
$$

Here $\nabla^{2} \vec{E}$ is the vector Laplacian

$$
\nabla^{2} \vec{E}=\frac{\partial^{2} \vec{E}}{\partial x^{2}}+\frac{\partial^{2} \vec{E}}{\partial y^{2}}+\frac{\partial^{2} \vec{E}}{\partial z^{2}},
$$

and $\nabla^{2} \vec{B}$ is defined similarly (with \vec{E} replaced by \vec{B}).
By completing this exercise, you are showing that the fundamental laws of electrodynamics suggest the possibility of electromagnetic waves, i.e. light. Fiat lux!

4 True/False

Supply convincing reasoning for your answer. Assume all functions are infinitely differentiable unless stated otherwise.
(a) T F For every vector field \vec{F} on \mathbb{R}^{3}, we have $\nabla \cdot(\nabla \times \vec{F})=0$.
(b) T F The divergence of a vector field is a scalar function, while the curl of a vector field is a vector field.
(c) T F Every vector field \vec{F} on \mathbb{R}^{3} arises as the curl of some vector field \vec{G}.
(d) T F Every function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ arises as the divergence of some vector field \vec{F}.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

